

PURE SPECTRA

Passion for prisms

Model B

"Complex assembly of sensors on prism is our passion"

Passion for prisms

- Using an off-the-shelf product, today, means also that the intellectual property can not be utilized in your added value.
- The complete cameras are based on optical prism technology, electronics and software for interfacing. Even with large volume, price elasticity is not available.
- Due to high variation of possibilities the standard cameras focus on limited (probably not your) application.

- Buying of the shell technology where you need to accept the product as is. So limited flexibility
- Use multiple camera "multi-modus" where the system has more than one lens. And accepting the parallax effects. Not ideal.
- Building your own beam splitter with multiple cameras as part of an optical design adventure. This can be a challenging journey.

We have the solution

What is our solution?

- With our unique production technology we have designed a common prism block which can be used as a flexible OEM front end module
- Resulting in high quality prism clusters, no parallax effect
- Our bonding machine allows (<1 micron) accuracy when gluing the prism and the image sensors. Offering accurate cross corelation
- Creation of Model B which is a functional frontend module
 Model B

2. Model B

Model B has 3 functions:

- 1. Lens interface (C-Mount, ¹/₂" & ¹/₃")
- 2. Mounted prism with bonded sensors
- 3. Output PCB with SLVS interface to the sensor. The sensors support 8 channels with a clock

Sensors used by Pure Spectra

Model	Sensor / SONY	Interface	
В1	IMX273	Sub LVDS 8 Ch	594Mbps/ch
B2	IMX548	SLVS 8Lane	891Mbps or 594Mbps or 445.5Mbps or 297Mbps /lane *1
B5	IMX548	SLVS 8Lane	891Mbps or 594Mbps or 445.5Mbps or 297Mbps /lane *1
	ΙΜΧ990	SLVS 4 Lane	SWIR 594Mbps or 297Mbps /lane *1

Interface		Power			Standard	Speed [max]
		Rate	Common [V]	Diff [mV]		
LVDS	Low Voltage Differential Signaling.	Н	1,25	350	TIA/EIA-644	8ooMbps/ch
Sub LVDS	Sub Low Voltage Differential Signaling	L	0,9	150	Standard Mobile imaging Architecture	8ooMbps/ch
SLVS	Scalable Low Voltage Signaling	L	0,2	200	JEDEC JESD8-13 SLVS-400	3Gbps/lane

Our Proposition

"Model C" camera prepared with MIPI

jetson Nano

interface and SDK for

The complexity of assembly sensors at the prism is our passion

12/9/2022

Thank you for your attention! Any questions?

